

杭基礎建物の応答評価方法

被災建物のシミュレーション解析の 現状

これまでの被災シミュレーション事例

1995年兵庫県南部地震

〇液状化地盤上の杭基礎建物

(ポートアイランド、上部被害、杭被害)

〇非液状化地盤上の直接基礎建物(浮上り、被害小) 〇非液状化地盤上の杭基礎中層RC造集合住宅(東灘区、杭被害)

2003年十勝沖地震

〇杭基礎RC造校舎(杭被害、変動軸力)

2004年新潟県中越地震

〇杭基礎RC造校舎

(小千谷、杭・建物被害小、2方向同時入力、根入れ、杭頭固定度)

2007年新潟県中越沖地震

×杭基礎RC造庁舎(柏崎、建物被害小)

Rビル GL(m) GL(m) 30. 杭基礎建物の被災シミュレーション Qy 地盤諸元記号 建物 (RC造) To=0.32sec 11:居厚 N - MPF Vs: せん断波速度 γ :単位体積質量 h_{max}:最大減衰定数 h=0.03 6 250 20 20 杭 (PC杭) 3F D_r:相対密度 Ep=4.0×10⁴MPa 7,40 R20: 维状化强度此 γ_a=2.6k/m³ 2F 4層RC造杭基礎建物(Rビル) hp=0.03 8,370 1F 10 10 美容 3m (m) (m/sec) (t/m³) (%) 13,830 PCH 500¢ (CHL) 13m 出め土 16.0 200 1.80 0.30 70 0.3 (1.5m×2, 2.0m×5, 0L 0 3.0m×1) 200 400 600 200 100 0 最大応答加速度(Gal) 最大応答層せん断力(MN) PC抗 5004 (B租) 15m 全体応答 ------ 地盤震動 ------ 建物慣性力 粘土 12.0 120 1.60 0.20 GL(m) 42m (3.0m×4) 0 _____ 10 T 6.0 250 1.80 0.30 65 0.3-PC状 6004 (A租) 14m 6.0 300 1.85 0.22 75 0.4 1.80 0.20 300 - My 5 ± 20 **8**0 300 - 1.85 0.22 90 0.6 Md 2.5m×2) シルト 5.0 300 1.80 0.22 (2.5m×2) 上部構造はほぼ無被害 19 🗰 2.0 300 1.85 0.24 90 1.0 ヨ部に 5月日 粘土 26.0 300 1.80 0.20 (5.0m×4. 6.0m×1) 御習言語::: 液状化を考慮した地層 0 100 200 300 400 GL-83m *********************** 最大応答曲げモーメント(MNm)

杭基礎建物の被災シミュレーション

8層S造杭基礎建物(Sビル)

杭は未調査(傾斜の報告はない)

2007年新潟県中越沖地震における 杭基礎RC造庁舎の被災シミュレーション

2007年新潟県中越沖地震

 発生日時
 平成19年7月16日(月)10時13分頃

 震源
 新潟県上中越沖(北緯37.5°、東経138.6°)

 震源の深さ
 約17km

 規模
 マグニチュード6.8(暫定値)

 各地の主な震度
 震度6強 新潟県長岡市小国町法坂・柏崎市西山町池浦・ 刈羽村割町新田・長野県飯綱町芋川

 震度6弱 上越市柿崎区柿崎・上越市吉川区原・上越市三和区井ノロ・ 長岡市中之島・小千谷市土川・出雲崎町米田

 津波注意報
 10時14分発表 発令 11時20分解除

建物応答解析の流れ

建物に実際に入力した地震動の推定

表4 GL に対する B1F の最大加速度比と最大速度比

0.40 0.41 0.53 0.69

0.48 0.31 0.61 0.94

0.24 0.11 0.40 0.43

0.44 0.63 0.55 0.66

最大加速度

X Y UD

7/20 01:52 0.26 0.20 0.17 0.77

8/8 23:02 0.41 0.21 0.36 0.56

0.35 0.26

7/24 15:51 0.14 0.33 0.41

観測日時

(2007年)

7/20 14:19

8/3 11:01

8/4 00:16

平均

B1F/GL

Х

0.40 0.51

最大速度

0.64

0.32

(a) 平均フーリエスペクトル比

(b) 解析結果との比較

0.5

Period (sec)

5

40-

300

0.03

解析結果と設計値との比較

杭基礎建物の被害予測手法の 現状と課題(まとめに代えて)

予測手法の現状

- ▶ 定性的傾向はある程度説明できる。
- ▶ 十分に説明できる状況には至っていない。
- 杭の実性能(設計値と実際の性能の差、接合 部等)
- ▶ その他
- 大地震に対する被害予測にむけて
 - ▶ 地盤の材料特性(特に、大ひずみ領域)

構造物の地震時応答に影響を与える各種パラ メータは正しくモデル化できているか

